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1 Preliminaries

The analysis of the CDML common primitives supported by KF (see Table 1) led the definition of a
fragment of each CDML to be considered in the followings theorems, which will be denoted by UMLzero,
EERzero and ORM2zero, respectively, following a notation similar to the one defined in [1].

Definition 1. Let KF zero = {Object type, role, binary relationship, object type subsumption, relationship
subsumption, completeness constraint subsumption, disjoint object type subsumption, mandatory, object
type cardinality constraint} the fragment of KF that includes all common primitives. We denote KF zero

conceptual schema by Σzero
KF .

UMLzero, EERzero and ORM2zero are defined considering the KF zero corresponding primitive in
UML, ER and ORM2, respectively (see Table 1).

We denote the UMLzero, EERzero and ORM2zero conceptual schema by Dzero
UML, Dzero

EER and Dzero
ORM2,

respectively.

Table 1: Metamodel primitives and their corresponding ones in each CDML. (*) binary relationships.
(**) Only applied on more than two object types in a subsumption. (***) it represented differently by
means of ORM 2 Value types. (****) it not included in ER diagrams.

KF UML ER/EER ORM 2

Object type Class Entity Entity type/Object type
Role Association End Component of a relationship Role

Relationship (*) Association Relationship Fact type
Object type subsumption Subclass Subtype Subtype
Relationship subsumption Subtyping of associations Subtyping of relationships Subset constraint on fact type

Completeness constraint (**) Complete Total Total
Disjoint object type (**) Disjoint Disjoint Exclusive

Mandatory Mandatory role Mandatory Mandatory
Object type cardinality constraint Multiplicity constraint Cardinality constraint Frequency constraint

Attribute (***) Attribute Attribute Absent
Data type (****) Literal Absent Data type
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1.1 Embedding Rules

KF/DL Embedding Rules

Table 2: KF/DL Embedding Rules

KF DL

Object type O Concept O
Role rendConcept Role rendConcept

Data Type D Concept D
Attribute A of data type DT for the object type O Role a

∃a v O
∃a− v DT

O v ∃a u (≤ 1 a)
Binary Relationship R between O1 and O2 Concept R

∃ro1 v R
∃r−o1 v O1
∃ro2 v R
∃r−o2 v O2

R v ∃ro1 u (≤ 1 ro1) u ∃ro2 u (≤ 1 ro2)
Object type O cardinality constraint:

(1)Range (min, max) O v (≥ min r−o ) u (≤ max r−o )
(2)Range (.. max) O v (≤ max r−o )
(3)Range(min ..) O v (≥ min r−o )
Mandatory role ro O v ≥ 1 r−o
Object type subsumption OSub v OSup
Disjoint object type subsumption O1 v OSup

O2 v OSup
...

On v OSup
Oi v

dn
j=i+1 ¬Oj , for i = 1, . . . , n− 1

Completeness object type subsumption O1 v OSup
O2 v OSup

. . .
On v OSup

OSup v O1 tO2 t . . . tOn

Relationship Subsumption RChild v RParent
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2 UML

Definition 2. Let UMLzero be the fragment of UML that includes the following primitives:

• Classes

• Association end

• Binary association with multiplicity constraints

• Classes subsumption

• Relationship subsumption

• Mandatory

• Classes completeness constraints Subsumption

• Classes disjoint subsumption

We define Dzero
UML as UMLzero conceptual model.

Theorem 1. Let Dzero
UML be an UMLzero conceptual schema, Σzero be the corresponding KF conceptual

schema built using the interoperabilities rules and Σzero
ALCIN the ALCIN knowledge base constructed as

described in Table 2.

A class C is consistent in Dzero
UML if and only if the corresponding concept encoding of C, is satisfiable in

Σzero
ALCIN .

Proof. We assume that the signatures of symbols representing classes, relationships and roles are disjoint.
In the scope of this proof we will consider the FOL assertions in [2] as the semantic of a Dzero

UML conceptual
schema.

(Z⇒) Let I = (∆I , .I) be an instantiation of Dzero
UML, ie. a model of the corresponding FOL assertions,

such that CI 6= ∅. Then we can build a model J = (∆J , .J ) of Σzero
ALCIN such that CJ 6= ∅ as

follows:

∆J = ∆I ∪
⋃

A∈A{t(dC1,dC2)|(dC1, dC2) ∈ AI} where A denotes the set of all binary association

CJ = CI for each concept D correponding to classes in Dzero
UML

Finally, for each agregation and binary association without association class, A, we define

AJ = {t(dC1,dC2)|(dC1, dC2) ∈ AI}

and for eachALCIN role modeling the component of the association A associated with the concept
Ci, we define

aJC1 = {(t(dC1,dC2), d1)|(dC1, dC2) ∈ AI ∧ dC1 ∈ C1I}

and
aJC2 = {(t(dC1,dC2), d2)|(dC1, dC2) ∈ AI ∧ dC2 ∈ CI2 }

Trivially, CJ = CI 6= ∅. As for the rest of the expressions in Σzero, it must be verified that for all
I that are model of Σzero

UML, there is a J that is a model of the corresponding ALCIN knowledge
base.
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Binary relationships If a binary association A between two clases C1 and C2, with cardinality
constraint card1-min and card1-max and card2-min and card2-max, respectively then the
KF encoding built a binary relationship between two object type C1 and C2 with two roles
aC1 and aC2, which inherit cardinality constraints (KF Rules: UML-A1, UML-R1,UML-
MC1). This encoding is then translate to DL as follow:

∃aC1.> v A

∃a−C1.> v C1

∃aC2.> v A

∃a−C2.> v C2

A v ∃aC1 u (≤ 1 aC1) u ∃aC2 u (≤ 1 aC2)

C1 v (≥ card1−min a−C1) u (≤ card1−max a−C1)

C2 v (≥ card2−min a−C2) u (≤ card2−max a−C2)

As I is a model then the following formulas are true:

∀x, y.A(x, y) ⊃ C1(x) ∧ C2(y)

∀x.C1(x) ⊃ (card1−min ≤ #{y|A(x, y)} ≤ card1−max)

∀y.C2(y) ⊃ (card2−min ≤ #{x|A(x, y)} ≤ card2−max)

By definition,
AJ = {t(dC1,dC2)|(dC1, dC2) ∈ AI}

aJC1 = {(t(dC1,dC2), d1)|(dC1, dC2) ∈ AI}

aJC2 = {(t(dC1,dC2), d2)|(dC1, dC2) ∈ AI}

Therefore, J is a model for the first four ALCIN formulas, because they express the domain
and range of roles aC1, aC2 defined.

The fifth DL formula express that there is just one pair (dC1, dC2) in the A class and that
this pair is in both roles, which is true because of the definition of J .

Finally, the DL cardinality constraints formulas are satisfiables under the model J since
every dC1 such that C1(dC1) must keep to the cardinality of the elements dC2 ∈ C2 such that
A(dC1, dC2). The claim holds for C2(dC2).

Mandatory role This case can be considered as a binary relationship A in which one (or both)
of the roles is mandatory. Considering that aC1 is a mandatory role of A associated with the
concept C1, the following FOL formula

∀xC1(x) ⊃ ∃yA(x, y)

The KF encoding is built from the rule (UML-M1) and the DL encoding is the same as a
binary relationship, except for the formula

C1 v (≥ 1 a−C1)
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expressing that aC1 is a role mandatory. Hence J satisfies the ALCIN formula, since by the
FOL formula, every element e ∈ C1I is in the relationship A, ie (e, y) ∈ AI , therefore there
is at least one element (t, e) ∈ aJC1 for every e ∈ C1J .

Object Type Subsumptions In this case, the following DL axiom is in Σzero
ALCIN

CChild v CParent

This encoding is derived from the embedding rule (UML-1S).

Thus a subsumption between the classes Child and Parent is in Dzero
UML. I satisfies the FOL

formula
∀x.CChild(x) ⊃ CParent(x)

and considering that for all UML classes, we have defined CI = CJ , therefore, CChildJ ⊆
CParentJ .

Relationship subsumption The FOL formula is

∀x∀y.RelChild(x, y) ⊃ RelParent(x, y)

which is satisfied by I.

This fórmula is encoded in KF metamodel through the rule (UML-SA1). By the way we
have built the interpretation J for relationships, the DL encoding

RelChild v RelParent

is satisfied.

Completeness constraint Subsumption- Object types Completeness Subsumption The
following DL axiom is in Σzero

ALCIN

C1 v CSup

C2 v CSup

...

Cn v CSup

CSup v C1 t C2 t ... t Cn

This encoding is derived from the embedding rule (UML-C1), which can be extended to
more than two classes.

As the FOL subsumption formulas are satisfied by I, then the ALCIN subclass formulas are
satisfied by J .

Finally, the following FOL formula

∀x.CSup(x) ⊃
n∨

i=1

Ci(x), for i = 1, . . . , n− 1

is satisfiable by I, then every element in class CSup must be in Cj for some 1 ≤ j ≤ n.
Therefore, the interpretation J satisfies:

CSupJ ⊆
n⋃

i=1

CJi
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Object types Disjoint Subsumption The following DL axioms are in Σzero
ALCIN

C1 v CSup

C2 v CSup

...

Cn v CSup

Ci v
nl

j=i+1

¬Cj, for i = 1, . . . , n− 1

This encoding has been derived from the embedding rule (UML-D1) The following FOL
formulas capture the object types disjoint subsumption semantic

∀x.C1(x) ⊃ CSup(x)

∀x.C2(x) ⊃ CSup(x)

...

∀x.Cn(x) ⊃ CSup(x)

∀x.Ci(x) ⊃
n∧

j=i+1

¬Cj(x), for i = 1, . . . , n− 1

By the definition of the interpretation J for concepts associated to classes, the ALCIN
axioms are satisfied.

Hence, J is a model for Σzero
ALCIN

(⇐\) By the tree-model property we know that if C is satisfiable w.r.t. the ALCIN knowledge base
Σzero
ALCIN then there exists a tree-like model J = (∆J , .J ) of Σzero

ALCIN , such that CJ 6= ∅. From such
a tree-like model we can build an instantiation I = (∆I , .I) of Dzero

UML such that CI 6= ∅, as follows:

∆I =
⋃

C∈C CJ , where C denotes the set of all classes in Dzero
UML.

CI = CJ for all classes C in Dzero
UML

Finally, for each binary association without association class, A, between C1 and C2 we define

AI = {(dC1, dC2)|∃t ∈ AJ .
∧

Ci∈CA

(t, dCi) ∈ rJCi}

where CA is the set of the two concepts taking part in the relation A, ie{C1, C2}.

Since J is a tree-like model, it is guaranteed that there is only one object t in an objectified
relation AJ representing a given tuple in A. Keeping such an observation in mind we must check
that I is indeed an instantiation of Dzero

UML with CI 6= ∅.
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Binary relationships A model J satisfies the following ALCIN assertion,

∃aC1.> v A

∃a−C1.> v C1

∃aC2.> v A

∃a−C2.> v C2

A v ∃aC1 u (≤ 1 aC1) u ∃aC2 u (≤ 1 aC2)

C1 v (≥ card1−min a−C1) u (≤ card1−max a−C1)

C2 v (≥ card2−min a−C2) u (≤ card2−max a−C2)

This encoding has been built from the KF metamodel applying the rules UML-A1, UML-
R1,UML-MC1. Back to the UML diagram, Dzero

UML we recover a binary association A
between two clases C1 and C2, with cardinality constraint card1-min and card1-max and
card2-min and card2-max, respectively.

Thus, we must prove that I is a model of the following formulas:

∀x, y.A(x, y) ⊃ C1(x) ∧ C2(y) (1)

∀x.C1(x) ⊃ (card1−min ≤ #{y|A(x, y)} ≤ card1−max) (2)

∀y.C2(y) ⊃ (card2−min ≤ #{x|A(x, y)} ≤ card2−max) (3)

Each object d ∈ ∆J that is related via a role aC1 to an object otj, corresponding to a tuple
in AJ , is actually related to m objects otj, 1 ≤ j ≤ m, card1−min ≤ m ≤ card1−max, i.e.
(otj, d) ∈ aJC1, 1 ≤ j ≤ m. Similarly, for the role aC2.

By definition,

AI = {(dC1, dC2)|ot ∈ AJ ∧ t = (dC1, dC2) is the correspondig tuple for the object ot}

C1I = C1J

C1I = C1J

The interpretation I built from J as above, populates the relation AI with m tuples t1; . . . ; tm
corresponding to the objects in A, and such that oti corresponds to ti for each 1 ≤ i ≤ m.
Thus, the elements in AI are ordered pairs with first element in C1 and second en C2.
Therefore, the equation (1) is satisfied.

Furthermore, according to the fact that J is a tree-like model, it is always possible to exclude
the case where there is more than one tuple in AI for each object in AJ . Consequently, the
formulas (2) and (3) are satisfied.

Mandatory role This case is considered as a binary relationship A in which one (or both) of the
roles is/are mandatory. The DL encoding is the same as a binary relationship, except for the
formula

C1 v (≥ 1 a−C1)

expressing that aC1 is a role mandatory. Hence J satisfies the ALCIN formula.
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Object Type Subsumptions In this case, the following DL axiom is in Σzero
ALCIN

CSub v CSup

As J is a model of Σzero
ALCIN , then CSubJ ⊆ CSupJ is satisfied.

As we just consider the case that this subsumption between the classes CSub and CSup are
in Dzero

UML and that this encoding is derived from the embedding rule (UML-1S)

Thus, the FOL formula
∀x.CSub(x) ⊃ CSup(x)

is satisfied since we have defined CI = CJ , for all UML classes, . Therefore, CSubI ⊆ CSupI .

Relationship subsumption ALCIN assertion

RelChild v RelParent

is satisfied by J .

This fórmula was encoded in KF metamodel through the rule (UML-SA1). Thus the cor-
responding FOL formula is

∀x∀y.RelChild(x, y) ⊃ RelParent(x, y)

which is satisfied by I.

Completeness constraint Subsumption- Object types Completeness Subsumption The
following DL axiom is in Σzero

ALCIN are satisfied by J :

C1 v CSup

C2 v CSup

...

Cn v CSup

CSup v C1 t C2 t ... t Cn

Therefore, it is satisfied the following:

CJ1 ⊆ CSupJ

CJ2 ⊆ CSupJ

...

CJn ⊆ CSupJ

CSupJ ⊆ CJ1 ∪ CJ2 ∪ ... ∪ CJn (4)

This encoding is derived from the following embedding rule (UML-C1). Thus, all the classes
CSup, C1, . . . , Cn are in Dzero

UML and for definition of I the FOL subsumption formulas are
satisfied.

The following FOL formula

∀x.CSup(x) ⊃
n∨

i=1

Ci(x), for i = 1, . . . , n− 1

is satisfied by I, because the relation (4) is satisfied.
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Object types Disjoint Subsumption The following DL axioms are in Σzero
ALCIN and they are all

satisfied by J

C1 v CSup

C2 v CSup

...

Cn v CSup

Ci v
nl

j=i+1

¬Cj, for i = 1, . . . , n− 1

We consider the case where this encoding has been built from the KF embedding rule (UML-
D1). So the following FOL formulas must been satisfied by I:

∀x.C1(x) ⊃ CParent(x)

∀x.C2(x) ⊃ CParent(x)

...

∀x.Cn(x) ⊃ CParent(x)

∀x.Ci(x) ⊃
n∧

j=i+1

¬Cj(x), for i = 1, . . . , n− 1

As every class in this formulas are in Dzero
UML then above formulas are satisfied by I.

Hence, I is a model for Dzero
UML.

3 ORM 2

Definition 3. Let ORM2zero be the fragment of ORM2 that includes the following primitives:

• Entity type

• Role

• Binary Fact Type

• Frequency constraints Frecuency

• Subset constraint on fact type

• Total

• Exclusive

We define Dzero
ORM2 as ORM2zero conceptual model.
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Theorem 2. Let Dzero
ORM2 be an ORM zero diagram, Σzero be the corresponding KF conceptual schema

built using the embedding rules and Σzero
ALCIN the ALCIN knowledge base constructed as described in

Table 2.
An entity type E is consistent in Dzero

ORM if and only if the corresponding concept encoding of E, is
satisfiable in Σzero

ALCIN .

Proof. We assume that the signatures of the symbols representing entity types, fact types and roles are
disjoint.

In the scope of this proof we will consider the FOL formalisation of ORM2 in [3] as semantics of
Dzero

ORM2.

(Z⇒) Given a model I = (∆I , .I) be an instantiation of Dzero
ORM2, ie. a model of the corresponding FOL

assertions, such that EI 6= ∅. Then we can build a model J = (∆J , .J ) of Σzero
ALCIN such that

EJ 6= ∅ as follows:

∆J = ∆I ∪
⋃

FT∈FT {t(dE1,dE2)|(dE1, dE2) ∈ FT I} where FT denotes the set of all binary fact type.

EJ = EI for each concept E correponding to entity type in Dzero
UML

Finally, for each binary fact type FT, we define FTJ = {t(dE1,dE2)|(dE1, dE2) ∈ FT I} and for each
ALCIN role modeling de ith-component of the fact type FT, we define ftJi = {(t(dE1,dE2), dEi)|(dE1, dE2) ∈
FT I}

Trivially, EJ = EI 6= ∅. As for the rest of the expressions in Σzero, it must be verified that for all
I that are model of Σzero

ORM2, there is a J that is a model of the corresponding ALCIN knowledge
base.

Binary Fact Type I is a model for Fact Type(P(E1,E2)).Thus the formula

∀xy.P (x, y) ⊃ E1(x) ∧ E2(y)

is satisfied.

A binary fact type is encoded in KF metamodel as a binary relationship reified with two
roles(ORM2-O1,ORM2-A1, ORM2-R1). This encoding is then translate to DL as follow:

∃pE1 v P

∃p−E1 v E1

∃pE2 v P

∃p−E2 v E2

P v ∃pE1 u (≤ 1 pE1) u ∃pE2 u (≤ 1 pE2)

By definition,
PJ = {t(dE1,dE2)|(dE1, dE2) ∈ P I}

pJE1 = {(t(dE1,dE2), dE1)|(dE1, dE2) ∈ P I}

pJE2 = {(t(dE1,dE2), dE2)|(dE1, dE2) ∈ P I}
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Therefore, J is a model for the first four ALCIN formulas, because they express the domain
and range of roles pE1 and pE2.

The fifth DL formula express that there is just one pair (dE1, dE2) in the P concept and that
this pair is in both roles, which is true because of the definition of the interpretation J for
roles and fact type.

Frequency constraints We consider four types of Frecuency(Pi, F ), where Fact Type(P(E1,E2))
and

(1) F is (min..max)

(i) min > 1: If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≥minyP (x1, y) ∧ ∃≤maxyP (x1, y) (5)

Similarly, when i=2.

In this case, the role pE1 must be mandatory, in order to be in the conditions of the
KF metamodel rule ORM2-MC1-2. Therefore, I satisfies the formula above and

∀x.E1(x) ⊃ ∃yP (x, y) (6)

The following ALCIN formula is generated from ORM2-MC1

E1 v (≥ min p−E1) u (≤ max p−E1) (7)

By the formula (6), forall e1 ∈ E1I , exists at least one e′ ∈ E2I , such that (e1, e′) ∈
P I . By equation (5) there exists y1, . . . , ym such that (o, ym) ∈ P I and min ≤ m ≤
max.
By definition

pJE1 = {(t(dE1, dE2), dE1)|(dE1, dE2) ∈ P I}

Thus, the following formulas (≥ min p−E1) and (≤ max p−E1) are satisfied ∀e1 ∈ E1J .
∴ The assertion (7) is satisfied by J .

(ii) min = 1: If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≥1yP (x1, y) ∧ ∃≤maxyP (x1, y) (8)

and I satisfies the formula above. Similarly, when i=2.
The KF rule applied is ORM2-MC1-1. The encoded range is (0,max) and the fol-
lowing ALCIN formula is generated

E1 v (≤ max p−E1) (9)

By equation (8) if two elements are related by P , then they must satisfy the frequency
constraint under I.
By definition

pJE1 = {(t(dE1, dE2), dE1)|(dE1, dE2) ∈ P I}

Thus, the formula (≤ max p−E1) is satisfied ∀e1 ∈ E1J , since if e1 is not in the
relationship P , then the frecuency is 0 and if e1 is in the relationship then it must
satisfy the cardinality.
∴ The assertion (9) is satisfied by J .
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(iii) min = 0: If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≤maxyP (x1, y) (10)

and I satisfies the formula above. Similarly, when i=2.
The KF rule applied is ORM2-MC1-1. The encoded range is (0,max) and the fol-
lowing ALCIN formula is generated

E1 v (≤ max p−E1) (11)

By equation (10), every element in E1 that is related by P , must satisfy the frequency
constraint under I.
By definition

pJE1 = {(t(dE1, dE2), dE1)|(dE1, dE2) ∈ P I}

Thus, the formula (≤ max p−E1) is satisfied ∀e1 ∈ E1J , since if e1 is not in the
relationship P , then the frecuency is 0 and if e1 is in the relationship then it must
satisfy the cardinality.
∴ The assertion (11) is satisfied by J .

(2) F is (min..): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≥minyP (y, x2) (12)

Similarly, when i=2.

(i) If min = 1 then
∀x1, x2.P (x1, x2) ⊃ ∃≥1yP (y, x2)

This case is similarly to (1)(ii)

(ii) If min > 1, the role pE1 must be mandatory, in order to be in the conditions of the
KF metamodel rule ORM2-MC1-2. Therefore, I satisfies the formula (12) and

∀x.E1(x) ⊃ ∃yP (x, y) (13)

The following ALCIN formula is generated from ORM2-MC1

E1 v (≥ min p−E1) (14)

By the formula (13), forall e1 ∈ E1I , exists at least one e′ ∈ E2I , such that (e1, e′) ∈
P I . By the formula (12) there exists y1, . . . , ym such that (o, ym) ∈ P I and min ≤ m.
By definition

pJE1 = {(t(dE1, dE2), dE1)|(dE1, dE2) ∈ P I}

Thus, the following formula (≥ min p−E1) is satisfied ∀e1 ∈ E1J .
∴ The assertion (14) is satisfied by J .

(3) F is (..max): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≤maxyP (y, x2)

Similarly, when i=2.
This case is similarly to (1)(iii)
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(4) F is (card): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃=cardyP (y, x2)

Similarly, when i=2.
This case can be considered as F (card, card)

Subtype I satisfies
∀x.E1(x) ⊃ E(x)

In this case, the following DL axiom is in Σzero
ALCIN

E1 v E

for E,E1 entity types. This encoding is derived from the following embedding rule ORM2-S1.

By the way we built the interpretationJ for entity types, it satisfies the DL axiom.

Subset constraint on fact type Applies only to a pair offact types.
I satisfies

∀x, y.P (x, y) ⊃ P ′(x, y)

In this case, the following DL axiom is in Σzero
ALCIN

P v P ′

This encoding is derived from the following embedding rule ORM2-SA1.

By the definition of the interpretation J for fact types, we can conclude that it satisfies the
DL axiom.

Simple Mandatory I satisfies Mand(E1,Pi):If i = 1, ∀x.E1(x) ⊃ ∃yP (x, y). Similarly, when
i = 2. Thus the relationship has at least one tuple for every element in E1(x).

Consider P the relationship and pE1 the role between P and E1, which is mandatory. Then
the embedding rule ORM2-M1 has been applied and the following DL generated.

E1 v ≥ 1 p−E1

By definition, pJE1 there is at least one element (t, e) for every e ∈ E1. Therefore, the DL
axiom is satisfied by J .

Total I satisfies Exhaustive Subtype({E1,E2,. . . , En}; E):(
(∀x.E1(x) ⊃ E(x))∧(∀x.E2(x) ⊃ E(x)) . . . (∀x.En(x) ⊃ E(x))

)
∧(∀x.E(x) ⊃ E1(x)∨. . .∨En(x))

The following DL axiom is in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

E v E1 t E2 t ... t En

This encoding is derived from the embedding rule(ORM2-C1).

By definition of J for the entity types in Dzero
ORM2, it satisfies the ALCIN formulas.
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Exclusive I satisfies ExclusiveSubtype({E1,E2,. . . , En}; E):(
∀x.E1(x) ⊃ E(x)∧¬E2(x)∧. . .∧¬En(x)

)
∧. . .∧

(
∀x.En−1(x) ⊃ E(x)∧¬En(x)

)
∧
(
∀x.En(x) ⊃ E(x)

)
The following DL axioms are in Σzero

ALCIN

E1 v E

E2 v E

...

En v E

Ei v
nl

j=i+1

¬Ej, for i = 1, . . . , n− 1

This encoding is derived from the embedding rule(ORM2-D1).

By definition of J for the entity types in Dzero
ORM2, it satisfies the ALCIN formulas.

Hence, J is a model of Σzero
ALCIN .

(⇐\) By the tree-model property we know that if E is satisfiable w.r.t. the ALCIN knowledge base
Σzero
ALCIN then there exists a tree-like model J = (∆J , .J ) of Σzero

ALCIN , such that EJ 6= ∅. From such
a tree-like model we can build an instantiation I = (∆I , .I) of Dzero

ORM2 such that EI 6= ∅, as follows:

∆I =
⋃

E∈E EJ , where E denotes the set of all entities in Dzero
ORM2.

CI = CJ for all entity types E in Dzero
ORM2

Finally, for each binary relationship, P, we define

P I = {(dE1, dE2)|∃t ∈ PJ .
2∧

j=1

(t, dEj) ∈ rEj
J }

Since J is a tree-like model, it is guaranteed that there is only one object t in an objectified
relation PJ representing a given tuple in P. Keeping such an observation in mind we must check
that I is indeed an instantiation of Dzero

ORM2 with EI 6= ∅.

Binary Fact Type A binary fact type is encoded in KF metamodel as a binary relationship rei-
fied with two roles(ORM2-O1,ORM2-A1, ORM2-R1). This encoding is then translate
to DL as follow:

∃pE1.> v P

∃p−E1.> v E1

∃pE2.> v P

∃p−E2.> v E2

P v ∃pE1 u (≤ 1 pE1) u ∃pE2 u (≤ 1 pE2)

14



J is a model for the ALCIN formulas

The corresponding FOL formula is

∀xy.P (x, y) ⊃ E1(x) ∧ E2(y)

By definition,

P I = {(dE1, dE2)|ot ∈ PJ ∧ t = (dE1, dE2) is the correspondig tuple for the object ot}

E1I = E1J

E2I = E2J

The interpretation I built from J as above, populates the relation P I with m tuples t1; . . . ; tm
corresponding to the objects in P , and such that oti corresponds to ti for each 1 ≤ i ≤ m.
Thus, the elements in P I are ordered pairs with first element in E1 and second en E2.
Therefore, the FOL formula is satisfied by I.

Frequency constraints We consider four types of Frecuency(Pi, F ), where Fact Type(P(E1,E2))
and

(1) F is (min..max): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≥minyP (x1, y) ∧ ∃≤maxyP (x1, y) (15)

Similarly, when i=2.

(i) min > 1: The following ALCIN formula is generated from ORM2-MC2 and is
satisfied by I.

E1 v (≥ min p−E1) u (≤ max p−E1) (16)

In this case, the KF metamodel rule ORM2-MC1-2 has been applied. Thus J must
satisfy the formula (15) and the mandatory expression

∀x.E1(x) ⊃ ∃yP (x, y) (17)

By definition

P I = {(dE1, dE2)|∃t ∈ PJ .
2∧

j=1

(t, dEj) ∈ pJEj}

Knowing that I satisfies (16) and considering that min > 1 and the definition of J
we can conclude that every element e ∈ E1 is in relation P with at least one element.
Thus the formula (17), is satisfied by J .
Furthermore, by the definition of P I and (16) for every e ∈ E1, there exists y1, . . . , ym
such that (e, ym) ∈ P I and min ≤ m ≤ max.

∴ The assertion (15) is satisfied by I.

(ii) If i=1 then the KF rule applied is ORM2-MC1-1. The encoded range is (0,max) and
the following ALCIN formula is satisfied by J

E1 v (≤ max p−E1) (18)

Thus, every element e ∈ E1J , if there is no tuple (e, y) ∈ PJ then (15) is satisfied
by I.
If e participes in the relationship P , then it must satisfy cardinality constraints.
Therefore, by the definition of P I , (15) is satisfied by I.
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(iii) min = 0: This case is similar to the above case.

(2) F is (min..): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≥vyP (y, x2)

Similarly, when i=2.
This case is similarly to (1)(ii) when min = 1 and to (1)(i) when min > 1

(3) F is (..max): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃≤wyP (y, x2)

Similarly, when i=2.
This case is similarly to (1)(iii)

(4) F is (card): If i=1 then

∀x1, x2.P (x1, x2) ⊃ ∃=vyP (y, x2)

Similarly, when i=2.
This case can be considered as F (card..card).

Subtype J satisfies
E1 v E

the DL axiom is in Σzero
ALCIN

This encoding is derived from the embedding rule ORM2-S1.

By the way we built the interpretation I for entity types, it satisfies the FOL formula

∀x.E1(x) ⊃ E(x)

Subset constraint on fact type Applies only to a pair of fact types.
The ALCIN axiom in Σzero

ALCIN is
P v P ′

and it is satisfies by J .

This encoding is derived from the following embedding rule ORM2-SA1.

By the definition of the interpretation I for fact types, we can conclude that it satisfies

∀x, y.P (x, y) ⊃ P ′(x, y)

Simple Mandatory Consider P the relationship and pE1 the role between P and E1, which
is mandatory. Then the embedding rule ORM2-M1 has been applied and the following DL
generated.

E1 v ≥ 1 p−E1

As J satisfies the above formula, so pJE1 has at least one element (t, e) for every e ∈ E1.
Thus the relationship P I has at least one tuple for every element in E1(x).

Therefore, the FOL formula Mand(E,Pi):If i = 1, ∀x.E(x) ⊃ ∃yP (x, y) is satisfied by I.
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Total The following DL axioms are in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

E v E1 t E2 t ... t En

and are satisfied by J . This encoding is derived from the embedding rule ORM2-C1.

By definition of I for the entity types in Dzero
ORM2, it satisfies the following FOL formula:

Exhaustive Subtype({E1,E2,. . . , En}; E)(
(∀x.E1(x) ⊃ E(x))∧(∀x.E2(x) ⊃ E(x)) . . . (∀x.En(x) ⊃ E(x))

)
∧(∀x.E(x) ⊃ E1(x)∨. . .∨En(x))

Exclusive J satisfies the following DL axioms in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

Ei v
nl

j=i+1

¬Ej, for i = 1, . . . , n− 1

This encoding is derived from the embedding rule ORM2-D1.

Thus, by definition of I for the entity types in Dzero
ORM2, the following FOL formula is satisfied:

ExclusiveSubtype({E1,E2,. . . , En}; E):(
∀x.E1(x) ⊃ E(x)∧¬E2(x)∧. . .∧¬En(x)

)
∧. . .∧

(
∀x.En−1(x) ⊃ E(x)∧¬En(x)

)
∧
(
∀x.En(x) ⊃ E(x)

)
Hence, I is a model of Dzero

ORM2.

4 EER

Definition 4. Let EERzero be the fragment of EER that includes the following primitives:

• Entities

• Binary relationships

• Component of a relation

• Cardinality constraint

• Subtype

17



• Subtyping of Relationship

• Mandatory relationship

• Entities completeness constraints Subsumption

• Entities disjoint subsumption

We define Dzero
EER as EERzero conceptual model.

Theorem 3. Let Dzero
EER be an EERzero diagram, Σzero be the corresponding KF conceptual schema built

using the interoperabilities rules and Σzero
ALCIN the ALCIN knowledge base constructed as described in

Table 2.
An entity E is consistent in Dzero

EER if and only if the corresponding concept encoding of E, is satisfiable
in Σzero

ALCIN .

Proof. We assume that the signatures of the symbols representing entities, relationships and roles are
disjoint.

In the scope of this proof we will consider the formalisation of EER in [4] as semantics of Dzero
EER.

(Z⇒) Let I = (∆I , .I) be an instantiation of Dzero
EER, ie. a model of the corresponding semantics, such

that EI 6= ∅. Then we can build a model J = (∆J , .J ) of Σzero
ALCIN such that EJ 6= ∅ as follows:

∆J = ∆I ∪
⋃

R∈R{t(e1,e2)|(e1, e2) ∈ RI} where R denotes the set of all binary relationships.

EJ = EI for each concept E correponding to entities in Dzero
EER

For each binary relationship R, we define RJ = {t(e1,e2)|(e1, e2) ∈ RI}.
For each ALCIN role modeling the ith-component of the binary relationship R, we define

rJE1 = {(t(e1,e2), e1)|(e1, e2) ∈ RI}

and
rJE2 = {(t(e1,e2), e2)|(e1, e2) ∈ RI}

Trivially, EJ = EI 6= ∅. As for the rest of the expressions in Σzero, it must be verified that for all
I that are model of Σzero

EER, there is a J that is a model of the corresponding ALCIN knowledge
base.

Binary relationships I satisfies the following condition: For each relationship R = 〈rE1 :
E1, rE2 : E2〉, then

∀(e1, e2) ∈ ∆I ×∆I .(e1, e2) ∈ RI → e1 ∈ E1 ∧ e2 ∈ E2

In this case, the KF embedding rule applied is ER-A1.

This rule is encoded in ALCIN as
∃rE1.> v R

∃r−E1.> v E1

∃rE2.> v R

∃r−E2.> v E2

R v ∃rE1 u (≤ 1 rE1) u ∃rE2 u (≤ 1 rE2)
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By definition,
RJ = {t(e1,e2)|(e1, e2) ∈ RI}

rJE1 = {(t(e1,e2), e1)|(e1, e2) ∈ RI}

rJE2 = {(t(e1,e2), e2)|(e1, e2) ∈ RI}

Therefore, J is a model for the first four ALCIN formulas, because they express the domain
and range of roles rE1, rE2.

Finally, the fifth DL formula express that there is just one pair (e1, e2) in the R class and
that this pair is in both roles, which is true because of the definition of J .

Cardinality constraint I satisfies the following condition: For each relationship R = 〈rE1 :
E1, rE2 : E2〉, then

CARDR(R, rE1, E1) = (min1,max1)→ ∀e1 ∈ EI1 .min1 ≤ |(e1, e) ∈ RI | ≤ max1

and

CARDR(R, rE2, E2) = (min2,max2)→ ∀e2 ∈ EI2 .min2 ≤ |(e, e2) ∈ RI | ≤ max2

The KF embedding rule applied is ER-MC1, which generates the followingALCIN formulas

E1 v (≥ min1 r−E1) u (≤ max1 r−E1)

E2 v (≥ min2 r−E2) u (≤ max2 r−E2)

By definition,
rJE1 = {(t(e1,e2), e1)|(e1, e2) ∈ RI}

rJE2 = {(t(e1,e2), e2)|(e1, e2) ∈ RI}

Thus the tuples in each role rJEi satisfied the same cardinality constraints that RI and therefore
J satisifies the ALCIN formulas.

Subtype Let E1 and E2 two entities. I satisfies: E1 isa E2 implies EI1 ⊆ EI2
In this case, the following DL axiom in Σzero

ALCIN is

E2 v E1

This encoding is derived from the KF embedding rule ER-S1. Thus a subsumption between
the entities E2 and E1 is in Dzero

EER. As I is a model of E1 isa E2 and for all entities, we have
defined EI = EJ . Therefore, EJ1 v EJ2 .

Subtyping of Relationship Let R1 and R2 two binary relationships. I satisfies R1 isa R2

implies RI1 ⊆ RI2
This fórmula is encoded in KF metamodel through the KF interaoperability rule ER-SA1.

By definition of the interpretation J for relationship, it satisfies the DL encoding

R1 v R2

.
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Mandatory relationship For each relationship R = 〈rE1 : E1, rE2 : E2〉, then

CARDR(R, rE1, E1) = (1,max1)→ ∀e1 ∈ EI1 .1 ≤ |(e1, e) ∈ RI | ≤ max1

This assertion expresses that for every element in the entity E1, it must be the case that is
in relation R. Thus the DL encoding

E1 v (≥ 1 r−E1)

expressing that rE1 is a role mandatory is satisfied by J .

Entities completeness constraints Subsumption I satisfies the following condition: For each
entity E,E1, . . . , En, {E1, . . . , En}cov E implies EIi ⊆ EI , 1 ≤ i ≤ n and EI ⊆

⋃n
i=1 E

I
i

The embedding rule ER-C1 is applied and the following DL axioms are in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

E v E1 t E2 t ... t En

These formulas are satisfied by J because EI = EJ for all entities.

Entities disjoint subsumption I satisfies the following condition:
For each entity E,E1, . . . , En, {E1, . . . , En}disj E implies EIi ⊆ EI , 1 ≤ i ≤ n and

EIk ∩ EIj = ∅, k, j ∈ {1, . . . , n}, k 6= j

The embedding rule ER-D1 is applied and the following DL axioms are in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

Ei v
nl

j=i+1

¬Ej, for i = 1, . . . , n− 1 (19)

The first n formulas are satisfied by J because EI = EJ for all entities.

Consider the DL axiom (19). Let e ∈ EJi . As EJk ∩ EJj = ∅, k, j ∈ {1, . . . , n}, k 6= j,

and EI = EJ for all entities, then e 6∈ EJj , j ∈ {1, . . . , n}, i 6= j. Thus e ∈ ∆J \EJj , j ∈
{1, . . . , n}, i 6= j. Therefore, e ∈ (

di−1
j=1 ∆J \EJj ) u (

dn
j=i+1 ∆J \EJj ).

∴ e ∈
nl

j=i+1

¬EJj

Hence, J is a model for Σzero
ALCIN .
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(⇐\) By the tree-model property we know that if E is satisfiable w.r.t. the ALCIN knowledge base
Σzero
ALCIN then there exists a tree-like model J = (∆J , .J ) of Σzero

ALCIN , such that EJ 6= ∅. From
such a tree-like model we can build an instantiation I = (∆I , .I) of Dzero

EER such that EI 6= ∅, as
follows:

∆I =
⋃

E∈E EJ , where E denotes the set of all entities in Dzero
EER.

EI = EJ for all entities E in Dzero
EER

For binary relationship R, we define

RI = {(e1, e2)|∃t ∈ RJ .

2∧
i=1

(t, ei) ∈ rJEi}

For every role

Since J is a tree-like model, it is guaranteed that there is only one object t in an objectified
relation RJ representing a given tuple in R. We must check that I is indeed an instantiation of
Dzero

EER with EI 6= ∅.

Binary relationships J satisfies this ALCIN axioms

∃rE1 v R

∃r−E1.> v E1

∃rE2 v R

∃r−E2 v E2

R v ∃rE1 u (≤ 1 rE1) u ∃rE2 u (≤ 1 rE2)

that have been obtained by applying the KF embedding rule ER-A1.

By definition,

RI = {(e1, e2)|∃t ∈ RJ .
2∧

i=1

(t, ei) ∈ rJEi}

rJE1 = {(t, e1)|t ∈ RJ }

rJE2 = {(t, e2)|t ∈ RJ }

Therefore I satisfies the condition: For each relationship R = 〈rE1 : E1, rE2 : E2〉, then

∀(e1, e2) ∈ ∆I ×∆I .(e1, e2) ∈ RI → e1 ∈ E1 ∧ e2 ∈ E2

since for every tuple (e1, e2) the ALCIN axioms above ensure the domain and range of R.

Cardinality constraint The following ALCIN axioms

E1 v (≥ min1 r−E1) u (≤ max1 r−E1)

E2 v (≥ min2 r−E2) u (≤ max2 r−E2)

are satisfied by J .

Thus each e ∈ E1J there exists t1, . . . , tm, min1 ≤ m ≤ max1, such that (ti, e) ∈ rJE1.
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By definition, of RI we can ensure that the following condition:
For each relationship R = 〈rE1 : E1, rE2 : E2〉, then

CARDR(R, rE1, E1) = (min1,max1)→ ∀e1 ∈ EI1 .min1 ≤ |(e1, e) ∈ RI | ≤ max1

and

CARDR(R, rE2, E2) = (min2,max2)→ ∀e2 ∈ EI2 .min2 ≤ |(e, e2) ∈ RI | ≤ max2

is satisfied by I.

Subtype In this case, the following DL axiom is in Σzero
ALCIN

E2 v E1

E1 and E2 two entities and it is satified by J . This encoding is derived from the KF embedding
rule ER-S1. Thus a subsumption between the entities E2 and E1 is in Dzero

EER. As J is a
model of EJ1 v EJ2 and for all entities, we have defined EI = EJ . Therefore, the condition:
E1 isa E2 implies EI1 ⊆ EI2 is satisfied by I.

Subtyping of Relationship Let R1 and R2 two relationships. J satisfies the DL encoding

R1 v R2

This formula is obtained from the KF embedding rule ER-SA1.

By definition of the interpretation I for relationship, it satisfies R1 isa R2 implies RI1 ⊆ RI2 .

Mandatory relationship The DL encoding

E1 v (≥ 1 r−E1)

expressing that rE1 is a role mandatory, is satisfied by J . Thus for every element in the
entity E1, it must be the case that is in relation R.

Thus the condition, for each relationship R = 〈r1 : E1, r2 : E2〉, then

CARDR(R, r1, E1) = (1,max1)→ ∀e1 ∈ EI1 .1 ≤ |(e1, e) ∈ RI | ≤ max1

is satisfied by I.

Entities completeness constraints Subsumption The following DL axioms in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

E v E1 t E2 t ... t En

are satisfied by J . The embedding rule that has been applied is ER-C1.

Since EI = EJ for all entities, then the following conditions:

For each entity E,E1, . . . , En, {E1, . . . , En}cov E implies EIi ⊆ EI , 1 ≤ i ≤ n and EI ⊆⋃n
i=1E

I
i

is satisfied by I.
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Entities disjoint subsumption J is a model of the following DL axioms in Σzero
ALCIN

E1 v E

E2 v E

...

En v E

Ei v
nl

j=i+1

¬Ej, for i = 1, . . . , n− 1

They were obtained appling the embedding rule ER-D1 from the following condition:

For each entity E,E1, . . . , En, {E1, . . . , En}disj E implies EIi ⊆ EI , 1 ≤ i ≤ n and EIk ∩EIj =
∅, k, j ∈ {1, . . . , n}, k 6= j

The first n conditions are satisfied by I because EI = EJ for all entities.

Consider the last condition. Let suppose that e ∈ EIi ∩ EIk , i 6= k. If i < k then

Ei v
nl

j=i+1

¬Ej

Ei v ¬Ei+1 u . . . u ¬Ek u . . . u ¬En (20)

As e ∈ EIk then e ∈ EJk and e 6∈ ¬EJk and therefore e 6∈
dn

j=i+1 ¬E
J
j . This contradicts the

DL axiom refdisj-ER-vuelta.

Similarly, is the case when i > k considering

Ek v
nl

j=k+1

¬Ej

Thus e 6∈ EIi ∩ EIk , ∀i, k ∈ {1, . . . , n}, i 6= k.
∴ EIi ∩ EIk = ∅, ∀i, k ∈ {1, . . . , n}, i 6= k.

Hence, I is a model for Dzero
EER.
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