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1 Preliminaries

The analysis of the CDML common primitives supported by KF (see Table 1) led the definition of a
fragment of each CDML to be considered in the followings theorems, which will be denoted by UM L™,
EER*™ and ORM?2%"°, respectively, following a notation similar to the one defined in [1].

Definition 1. Let K F*"° = { Object type, role, binary relationship, object type subsumption, relationship
subsumption, completeness constraint subsumption, disjoint object type subsumption, mandatory, object
type cardinality constraint} the fragment of KF that includes all common primitives. We denote K F*"°

conceptual schema by X757 .

UML*° EER*™ and ORM?2*™ are defined considering the KF**° corresponding primitive in
UML, ER and ORM2, respectively (see Table 1).

We denote the UM L*™°, EER**™ and ORM 27" conceptual schema by Dii7;, Digr and DERe,
respectively.

Table 1: Metamodel primitives and their corresponding ones in each CDML. (*) binary relationships.
(**) Only applied on more than two object types in a subsumption. (***) it represented differently by
means of ORM 2 Value types. (****) it not included in ER diagrams.

KF UML ER/EER ORM 2
Object type Class Entity Entity type/Object type
Role Association End Component of a relationship Role
Relationship (¥*) Association Relationship Fact type
Object type subsumption Subclass Subtype Subtype
Relationship subsumption Subtyping of associations Subtyping of relationships Subset constraint on fact type
Completeness constraint (**) Complete Total Total
Disjoint object type (**) Disjoint Disjoint Exclusive
Mandatory Mandatory role Mandatory Mandatory
Object type cardinality constraint Multiplicity constraint Cardinality constraint Frequency constraint
Attribute (¥*¥) Attribute Attribute Absent
Data type (*¥***) Literal Absent Data type
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Embedding Rules

KF/DL Embedding Rules

Table 2: KF/DL Embedding Rules

KF

DL

Object type O

Concept O

Role TendConcept

Role TendConcept

Data Type D

Concept D

Attribute A of data type DT for the object type O

Role a

da C O

da~ T DT
OC Jan(<1la)

Binary Relationship R between 01 and 02

Concept R
37’01 g R
Ir;; CO1
3"no2 C R
Jr, C 02
R E 37’01 [l (S 1 7‘01) HE'TOQ M (S 1 7’02)

Object type 0 cardinality constraint:

(1)Range (min, max)

(3)Range(min ..)

Mandatory role 7,

o

Object type subsumption

OSub C OSup

Disjoint object type subsumption

O1 C OSup
05 CE OSup

O, COSup
-0;, fori=1,...,n—-1

0;C[]

n
j=i+t1

Completeness object type subsumption

O1 E OSup
O C OSup

0,, £ OSup
OSupT O UOxU...UO,

Relationship Subsumption

RChild T RParent




2 UML

Definition 2. Let UM L**" be the fragment of UML that includes the following primitives:
e Classes
e Association end
e Binary association with multiplicity constraints
e (lasses subsumption
e Relationship subsumption
e Mandatory
o Classes completeness constraints Subsumption
o (lasses disjoint subsumption
We define Difye, as UM L™ conceptual model.

Theorem 1. Let D7, be an UML*™ conceptual schema, X7 be the corresponding KF conceptual
schema built using the interoperabilities rules and Y5757y the ALCIN knowledge base constructed as
described in Table 2.

A class C' 1s consistent in Diff; if and only if the corresponding concept encoding of C, is satisfiable in

E.ALCIN ’

Proof. We assume that the signatures of symbols representing classes, relationships and roles are disjoint.
In the scope of this proof we will consider the FOL assertions in [2] as the semantic of a D7, conceptual
schema.

(=) Let Z = (A%, %) be an instantiation of Di%¢;, ie. a model of the corresponding FOL assertions,
such that C* # @. Then we can build a model J = (AY,.7) of %79, such that C7 # & as
follows:

AT = AT U e a{tidordes) | (der, deo) € AT} where A denotes the set of all binary association
C7 = C7 for each concept D correponding to classes in Dire,

Finally, for each agregation and binary association without association class, A, we define

AJ = {t(dCthz)KdCh dC?) € AI}

and for each ALCZN role modeling the component of the association A associated with the concept
C'i, we define
agl = {(t(dm,dcz)v d1)|(d01’ dCZ) S AZ A dCl € Clz}

and
ay = {(tacrdes), d2)|(dc1, de2) € AT A des € C3}

Trivially, CY = C% # &. As for the rest of the expressions in $*7, it must be verified that for all
T that are model of 377, , there is a J that is a model of the corresponding ALCZN knowledge
base.



Binary relationships If a binary association A between two clases C1 and C2, with cardinality
constraint cardl-min and cardl-max and card2-min and card2-max, respectively then the
KF encoding built a binary relationship between two object type C1 and C2 with two roles
acy and agg, which inherit cardinality constraints (KF Rules: UML-A1, UML-R1,UML-
MC1). This encoding is then translate to DL as follow:

dach. TC A
das,. T EC1
dacs. TC A
dac,. T C C2

A E 3&01 M (S 1 aol) 1 3@02 M (S 1 acg)

C1C (> cardl —min ag,) N (< cardl — maz agy)
C2C (> card2 —min ag,y) N (< card2 — maz agy)

As 7 is a model then the following formulas are true:

V,y. A(z,y) D Cl(z) A C2(y)
Vo.Cl(z) D (cardl — min < #{y|A(z,y)} < cardl — max)
Vy.C2(y) D (card2 — min < #{z|A(x,y)} < card2 — max)
By definition,
AT = {terdon (der, dez) € ATY
aly = {(tder dow), d)|(don, den) € AT}
aty = {(tacr.den), d2)| (don, de2) € AT}

Therefore, 7 is a model for the first four ALCZN formulas, because they express the domain
and range of roles acy, acse defined.

The fifth DL formula express that there is just one pair (dci,dc2) in the A class and that
this pair is in both roles, which is true because of the definition of 7.

Finally, the DL cardinality constraints formulas are satisfiables under the model J since
every dc such that C'1(de;) must keep to the cardinality of the elements dgo € C2 such that
A(dey,des). The claim holds for C2(des).

Mandatory role This case can be considered as a binary relationship A in which one (or both)
of the roles is mandatory. Considering that ac is a mandatory role of A associated with the
concept C'1, the following FOL formula

VeCl(x) D JyA(x,y)

The KF encoding is built from the rule (UML-M1) and the DL encoding is the same as a
binary relationship, except for the formula

C1C (>1ag)
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expressing that ac; is a role mandatory. Hence J satisfies the ALCZN formula, since by the
FOL formula, every element e € C'17 is in the relationship A, ie (e,y) € AZ, therefore there
is at least one element (t,¢e) € af, for every e € C17.

Object Type Subsumptions In this case, the following DL axiom is in Y%7z,
CChild C CParent

This encoding is derived from the embedding rule (UML-18S).

Thus a subsumption between the classes C'hild and Parent is in D7) I satisfies the FOL
formula

Vz.CChild(x) D CParent(z)

and considering that for all UML classes, we have defined C* = C7, therefore, CChild”? C
CParent? .

Relationship subsumption The FOL formula is
VaVy.RelChild(z,y) D RelParent(z,y)

which is satisfied by Z.

This férmula is encoded in KF metamodel through the rule (UML-SA1). By the way we
have built the interpretation [J for relationships, the DL encoding

RelChild T RelParent

is satisfied.

Completeness constraint Subsumption- Object types Completeness Subsumption The
following DL axiom is in %727,

C1 C CSup
Cy C CSup

C, ECSup
CSUpEClL|CQ|_||_|Cn

This encoding is derived from the embedding rule (UML-C1), which can be extended to
more than two classes.

As the FOL subsumption formulas are satisfied by Z, then the ALCZN subclass formulas are
satisfied by J.

Finally, the following FOL formula

Va.CSup(x) D \/Ci(a:), fori=1,...,n—1

i=1

is satisfiable by Z, then every element in class C'Sup must be in C; for some 1 < j < n.
Therefore, the interpretation J satisfies:

C’Supj C O Cz-j

=1



ZETO

Object types Disjoint Subsumption The following DL axioms are in X%7¢7x

C, C CSup
Cy = C'Sup

C, C CSup
G [ ~Cy fori=1,....n—1

j=i+1

This encoding has been derived from the embedding rule (UML-D1) The following FOL
formulas capture the object types disjoint subsumption semantic

Vr.Cy(x) D CSup(x)
Vr.Cy(x) D CSup(x)

Va.Cp(z) D CSup(z)
Vr.Ci(z) D /\ -Cj(x), fori=1,...,n—1
j=it+1
By the definition of the interpretation J for concepts associated to classes, the ALCIN
axioms are satisfied.

Hence, J is a model for X767,

(<) By the tree-model property we know that if C' is satisfiable w.r.t. the ALCZN knowledge base
Yo\ then there exists a tree-like model J = (A7, .7) of £%72_,,, such that CY # @. From such
a tree-like model we can build an instantiation Z = (A%, %) of D¢, such that C7 # &, as follows:

AT = C7, where C denotes the set of all classes in D¢, .
cec UML

C% = C7 for all classes C in D¢,

Finally, for each binary association without association class, A, between C'1 and C'2 we define

AT ={(den, de2) Bt € AT N\ (tdei) € 18}
CieCy

where C4 is the set of the two concepts taking part in the relation A, ie{C1, C2}.
Since J is a tree-like model, it is guaranteed that there is only one object ¢ in an objectified

relation A7 representing a given tuple in A. Keeping such an observation in mind we must check
that Z is indeed an instantiation of Di7¢, with CF # &.



Binary relationships A model J satisfies the following ALCIN assertion,

dac1. TC A
da,,. T EC1
dacy. TC A
das,. T CC2

A E 3&01 M (S 1 aCl) [l HGCQ M (S 1 acg)

C1C (> cardl —min agy) N (< cardl — maz agy)
C2C (> card2 —min ag,) N (< card2 — max ag,)

This encoding has been built from the KF metamodel applying the rules UML-A1, UML-
R1,UML-MC1. Back to the UML diagram, D7, we recover a binary association A
between two clases C1 and C2, with cardinality constraint cardl-min and cardl-max and
card2-min and card2-max, respectively.

Thus, we must prove that Z is a model of the following formulas:

Vo, y. Alz,y) D Cl(z) A C2(y) (1)
Va.Cl(z) D (cardl — min < #{y|A(z,y)} < cardl — max) (2)
Vy.C2(y) D (card2 — min < #{z|A(z,y)} < card2 — max) (3)

Each object d € A7 that is related via a role ac; to an object ot;, corresponding to a tuple
in A7, is actually related to m objects otj,1 <j <m,cardl —min <m < cardl —maxz, i.e.
(ot;,d) € aZ;, 1 < j < m. Similarly, for the role acs.

By definition,

AT = {(dey,des)|ot € AT At = (dey, des) is the correspondig tuple for the object ot}

c1t=c1’
c1t =c17
The interpretation Z built from 7 as above, populates the relation AZ with m tuples t1;. ..t

corresponding to the objects in A, and such that ot; corresponds to t; for each 1 < i < m.
Thus, the elements in A? are ordered pairs with first element in C'1 and second en C2.
Therefore, the equation (1) is satisfied.

Furthermore, according to the fact that J is a tree-like model, it is always possible to exclude
the case where there is more than one tuple in A% for each object in A7. Consequently, the
formulas (2) and (3) are satisfied.

Mandatory role This case is considered as a binary relationship A in which one (or both) of the
roles is/are mandatory. The DL encoding is the same as a binary relationship, except for the
formula

CIC (>1ag)
expressing that ac; is a role mandatory. Hence J satisfies the ALCZN formula.
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Object Type Subsumptions In this case, the following DL axiom is in X%z

C'Sub C C'Sup

As J is a model of X572/, then C'Sub” C CSup’ is satisfied.

As we just consider the case that this subsumption between the classes C'Sub and C'Sup are
in D{7; and that this encoding is derived from the embedding rule (UML-1S)

Thus, the FOL formula
Va.C'Sub(x) D CSup(x)

is satisfied since we have defined C% = OV, for all UML classes, . Therefore, C'Sub® C CSup?”.
Relationship subsumption ALCZN assertion

RelChild T RelParent

is satisfied by J.

This féormula was encoded in KF metamodel through the rule (UML-SA1). Thus the cor-
responding FOL formula is

VaVy.RelChild(x,y) D RelParent(x,y)
which is satisfied by Z.

Completeness constraint Subsumption- Object types Completeness Subsumption The
following DL axiom is in ¥X*7%7,, are satisfied by J:

C7 C CSup
Cy C CSup

C, T CSup
CSUp E Cl LJ 02 ... u Cn
Therefore, it is satisfied the following:

Cf C CSupJ

6'57 - C’Supj

Cy C OSup”
CSup’ ccyucy u..ucy (4)
This encoding is derived from the following embedding rule (UML-C1). Thus, all the classes

CSup,Ch,...,C, are in Dif; and for definition of Z the FOL subsumption formulas are
satisfied.

The following FOL formula

Va.CSup(x) D \/Ci(a:), fori=1,...,n—1

i=1

is satisfied by Z, because the relation (4) is satisfied.
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Object types Disjoint Subsumption The following DL axioms are in %727, and they are all
satisfied by J

Cy C CSup
Cy C CSup

C, C CSup
CGiC []~Cj fori=1,..,n-1
j=i+1
We consider the case where this encoding has been built from the KF embedding rule (UML-
D1). So the following FOL formulas must been satisfied by Z:

Vz.Cy(z) D CParent(x)
Va.Co(x) D C'Parent(x)

Vz.Cy(x) O CParent(x)
Ve.Ci(z) D /\ -Cj(z), fori=1,....,n—1

j=i+1

As every class in this formulas are in D7, then above formulas are satisfied by Z.

3 zZero
Hence, 7 is a model for D{77;.

3 ORM 2

Definition 3. Let ORM?2*“" be the fragment of ORM2 that includes the following primitives:
o Fntity type
e Role

Binary Fact Type

Frequency constraints Frecuency
e Subset constraint on fact type

e Total

o Fzclusive

We define Dgpb0 as ORM27™ conceptual model.



Theorem 2. Let D755 be an ORM®™ diagram, X7 be the corresponding KF conceptual schema
built using the embedding rules and X327y the ACCIN knowledge base constructed as described in
Table 2.

An entity type E is consistent in DEpq, if and only if the corresponding concept encoding of E, is
satisfiable in X707 -

Proof. We assume that the signatures of the symbols representing entity types, fact types and roles are
disjoint.

In the scope of this proof we will consider the FOL formalisation of ORM2 in [3] as semantics of
D5t

(=) Given a model Z = (A%, %) be an instantiation of DZrS,,, ie. a model of the corresponding FOL
assertions, such that EZ # @. Then we can build a model J = (A7,.7) of %%, such that
EJ # & as follows:

AT = AU prerr{ts dm)| (de1, dp2) € FT'} where FT denotes the set of all binary fact type.

ZETO

E7 = E? for each concept E correponding to entity type in D,

Finally, for each binary fact type FT, we define FTY = {t(4,, dp)|(dE1, dp2) € FTT} and for each
ALCIN role modeling de ith-component of the fact type FT, we define ft = {(t(dpr.dm), AEi)| (dE1, dE2) €
FTT}

Trivially, BV = E7 # &. As for the rest of the expressions in 3¥*", it must be verified that for all
7 that are model of X%75,,, there is a J that is a model of the corresponding ALCZN knowledge
base.

Binary Fact Type Z is a model for Fact Type(P(E1,E2)).Thus the formula
Vay.P(z,y) D El(z) A E2(y)

is satisfied.

A binary fact type is encoded in KF metamodel as a binary relationship reified with two
roles(ORM2-0O1,0RM2-A1, ORM2-R1). This encoding is then translate to DL as follow:

dpp E P
dpp E E1
2 EP
dppe & E£2

PC Jpp N (<1 pg)N3pes N (L1 ppo)

By definition,
P7 = {t(apy dp) |(dp1, dp2) € P*}

PF1 = {(t(apy.dua)> A1) |(dp1, dp) € PT}
pg2 = {(t(dElvdE2)’ dE?)KdEl? dE?) € PI}
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Therefore, 7 is a model for the first four ALCZN formulas, because they express the domain
and range of roles pg; and pgs.

The fifth DL formula express that there is just one pair (dgi, dgz2) in the P concept and that
this pair is in both roles, which is true because of the definition of the interpretation J for
roles and fact type.

Frequency constraints We consider four types of Frecuency(P;, F'), where Fact Type(P(E1,E2))

and

(1) F is (min..max)

(1)

(i)

min > 1: If i=1 then
V$1,I2-P($1,$2) 2 Hzmmyp(ﬁl,y) A Hgmwyp(%ay) (5)
Similarly, when i=2.

In this case, the role pg; must be mandatory, in order to be in the conditions of the
KF metamodel rule ORM2-MC1-2. Therefore, Z satisfies the formula above and

Vo.El(x) D yP(x,y) (6)
The following ALCZN formula is generated from ORM2-MC1
E1C (= min pg) N (< mar py,) (7)

By the formula (6), forall el € E17%, exists at least one ¢’ € E27, such that (el,e’) €
PZ. By equation (5) there exists yi, ..., ym such that (0,y,,) € P* and min < m <
maz.
By definition

iy = {(t(dp1, dp2), dp1)|(dpr, dis) € P*}
Thus, the following formulas (> min py,) and (< maz py,) are satisfied Vel € E17.
.. The assertion (7) is satisfied by J.
min = 1: If i=1 then

Va1, 2. P21, 29) D 7 yP(z1,y) A Iy P(z1,y) (8)

and Z satisfies the formula above. Similarly, when i=2.
The KF rule applied is ORM2-MC1-1. The encoded range is (0, max) and the fol-
lowing ALCZN formula is generated

E1C (< mazx pg) (9)

By equation (8) if two elements are related by P, then they must satisfy the frequency
constraint under 7.
By definition

pfy = {(t(dp1, dp2), dp1)|(dp1, dgs) € PT}
Thus, the formula (< max py,) is satisfied Vel € E17, since if el is not in the
relationship P, then the frecuency is 0 and if el is in the relationship then it must

satisfy the cardinality.
.. The assertion (9) is satisfied by J.
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(iii)

min = 0: If i=1 then
Yy, xe. P21, 22) D Hgmazyp(ifl,y) (10)

and Z satisfies the formula above. Similarly, when i=2.
The KF rule applied is ORM2-MC1-1. The encoded range is (0, max) and the fol-
lowing ALCTIN formula is generated

E1C (<max pg) (11)

By equation (10), every element in E1 that is related by P, must satisfy the frequency
constraint under 7.
By definition

v = {(t(dg1, dg2), dp1)|(dp1, dp2) € P}

Thus, the formula (< max py,) is satisfied Vel € E17, since if el is not in the
relationship P, then the frecuency is 0 and if el is in the relationship then it must
satisfy the cardinality.

.. The assertion (11) is satisfied by J.

(2) F is (min..): If i=1 then

Yy, xe. P21, 22) D Hzmmyp(%%) (12)

Similarly, when i=2.

(i)

(i)

If min =1 then
Yy, w9 P21, 22) D 37y Py, x2)
This case is similarly to (1)(ii)

If min > 1, the role pg; must be mandatory, in order to be in the conditions of the
KF metamodel rule ORM2-MC1-2. Therefore, Z satisfies the formula (12) and

Ve.El(x) D yP(z,y) (13)
The following ALCZN formula is generated from ORM2-MC1
E1C (> min pg) (14)

By the formula (13), forall el € E17, exists at least one ¢’ € E27, such that (el,¢’) €
PT. By the formula (12) there exists y1, . . ., ym such that (o0, y,,) € P* and min < m.
By definition

i1 = {(t(dp1, dp2), dp)|(dp1, dp2) € P}

Thus, the following formula (> min py,) is satisfied Vel € E17.
.. The assertion (14) is satisfied by J.

(3) Fis (..max): If i=1 then

vx1,$2.P($1,$2) D Elsmaxyp(yvl?)

Similarly, when i=2.
This case is similarly to (1)(iii)
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(4) Eis (card): If i=1 then
Yy, 2. P(a1,25) D 3=y Py, x5)

Similarly, when i=2.
This case can be considered as F' (card, card)
Subtype 7 satisfies
Va.El(z) D E(x)
In this case, the following DL axiom is in X%727 5
E1CFE

for E, F'1 entity types. This encoding is derived from the following embedding rule ORM2-S1.
By the way we built the interpretationJ for entity types, it satisfies the DL axiom.

Subset constraint on fact type Applies only to a pair offact types.
7 satisfies

Va,y.P(z,y) > P'(z,y)
In this case, the following DL axiom is in X%7¢7
PCP

This encoding is derived from the following embedding rule ORM2-SAT.

By the definition of the interpretation J for fact types, we can conclude that it satisfies the
DL axiom.

Simple Mandatory 7 satisfies Mand(E1,P;):If ¢ = 1, Vz.E1(x) D JyP(x,y). Similarly, when
i = 2. Thus the relationship has at least one tuple for every element in E1(z).

Consider P the relationship and pg; the role between P and E1, which is mandatory. Then
the embedding rule ORM2-M1 has been applied and the following DL generated.
E1C > 1 pyy

By definition, pZ, there is at least one element (t,e) for every e € E1. Therefore, the DL
axiom is satisfied by J.

Total 7 satisfies Exhaustive Subtype({E1,E2,..., En}; E):
((Vaz.El(:):) 5 E(@)AVz.B2(z) > E(x)). .. (Yr.BEn(z) O E(:):))) AVz.E(z) S El(z)V.. VEn(z))

The following DL axiom is in X527

E,.CFE
FCEUEU...UE,

This encoding is derived from the embedding rule(ORM2-C1).
By definition of J for the entity types in D&F3,., it satisfies the ALCZN formulas.
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Exclusive Z satisfies ExclusiveSubtype({E1,E2,..., En}; E):

(‘v’a:.El(x) D E(x)A\=E2(z)A. . ./\—En(x))/\. : ./\(V:U.En—l(x) D E(at)/\—En(x))/\(VxEn(x) D E(a

The following DL axioms are in X377,

E,C [] ~Ej fori=1,....n—1
j=it+1
This encoding is derived from the embedding rule(ORM2-D1).
By definition of J for the entity types in D&F3,., it satisfies the ALCZN formulas.

Hence, J is a model of X767,

(<) By the tree-model property we know that if E is satisfiable w.r.t. the ALCZN knowledge base
Y501\ then there exists a tree-like model J = (A7, .7) of ¥%72,,,, such that EY # @. From such
a tree-like model we can build an instantiation Z = (A%, %) of D%, such that EZ # &, as follows:

AT = Jgee EY, where € denotes the set of all entities in DEF5,,.
CT = CY for all entity types E in D53,
Finally, for each binary relationship, P, we define

2

P = {(dm, dw) 3t € P7. \(t,dij) € rj”}

Jj=1

Since J is a tree-like model, it is guaranteed that there is only one object ¢ in an objectified
relation PV representing a given tuple in P. Keeping such an observation in mind we must check
that Z is indeed an instantiation of DZ%3,, with EZ # &.

Binary Fact Type A binary fact type is encoded in KF metamodel as a binary relationship rei-
fied with two rolesfORM2-O1,0RM2-A1, ORM2-R1). This encoding is then translate
to DL as follow:

dpp1. TE P
dpp- T EE1
dppe. TE P
dppe. T C E2

PC Jpp N (<1 pr)N3pes N (<1 pro)

14



J is a model for the ALCZN formulas
The corresponding FOL formula is

Vay.P(z,y) D El(z) A E2(y)

By definition,

PT = {(dgy,dgs)|ot € PY At = (dp1,dps) is the correspondig tuple for the object ot}

E1t = E17
E2T = E2Y9

The interpretation Z built from 7 as above, populates the relation PZ with m tuples t1; ... ;t,,
corresponding to the objects in P, and such that ot; corresponds to t; for each 1 < i < m.
Thus, the elements in P? are ordered pairs with first element in £1 and second en E2.
Therefore, the FOL formula is satisfied by Z.

Frequency constraints We consider four types of Frecuency(P;, F'), where Fact Type(P(E1,E2))

and

(1) Fis (min..max): If i=1 then

V$17$2-P(I1,SU2) 2 Hzmmyp(xl’@ A Hgmmyp(l'hy) (15>

Similarly, when i=2.

(i)

(i)

min > 1: The following ALCZN formula is generated from ORM2-MC2 and is
satisfied by Z.
E1C (> min pg )N (< max pg) (16)

In this case, the KF metamodel rule ORM2-MC1-2 has been applied. Thus J must
satisfy the formula (15) and the mandatory expression

Vo.El(z) D 3yP(x,y) (17)
By definition

2
P? = {(dp1,dp2)|3t € P7. \(t.dz;) € pi;)

j=1
Knowing that Z satisfies (16) and considering that min > 1 and the definition of J
we can conclude that every element e € E'1 is in relation P with at least one element.
Thus the formula (17), is satisfied by J.

Furthermore, by the definition of PZ and (16) for every e € E1, there exists y1, . . ., ¥m
such that (e, y,,) € P and min < m < max.

.. The assertion (15) is satisfied by Z.

If i=1 then the KF rule applied is ORM2-MC1-1. The encoded range is (0, mazx) and
the following ALCZN formula is satisfied by J

E1C (<max pg) (18)

Thus, every element e € E17, if there is no tuple (e,y) € P7 then (15) is satisfied
by Z.

If e participes in the relationship P, then it must satisfy cardinality constraints.
Therefore, by the definition of PZ, (15) is satisfied by Z.
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(iii) min = 0: This case is similar to the above case.
(2) Fis (min..): If i=1 then

Va1, 20.P(21,25) D 3=y Py, 7o)

Similarly, when i=2.
This case is similarly to (1)(ii) when min = 1 and to (1)(i) when min > 1

(3) F is (..max): If i=1 then
Yy, 2o P11, 29) D 35Uy Py, x5)
Similarly, when i=2.

This case is similarly to (1)(iii)
(4) F is (card): If i=1 then

vxlaxQ'P(xlny) D) szyp(yaxQ)
Similarly, when i=2.

This case can be considered as F' (card..card).

Subtype J satisfies
F1CFE

the DL axiom is in Y%7z x
This encoding is derived from the embedding rule ORM2-S1.
By the way we built the interpretation Z for entity types, it satisfies the FOL formula

Vr.El(xz) D E(x)

Subset constraint on fact type Applies only to a pair of fact types.
The ACCIN axiom in Y5727, is
PCP

and it is satisfies by J.
This encoding is derived from the following embedding rule ORM2-SA1.
By the definition of the interpretation Z for fact types, we can conclude that it satisfies

Va,y.P(x,y) D P'(z,y)

Simple Mandatory Consider P the relationship and pg; the role between P and E1, which
is mandatory. Then the embedding rule ORM2-M1 has been applied and the following DL
generated.

E1C > 1 pgy

As J satisfies the above formula, so pgl has at least one element (¢,e) for every e € E1.
Thus the relationship P has at least one tuple for every element in E1(z).

Therefore, the FOL formula Mand(E,P;):If i = 1, Vx.E(x) D JyP(x,y) is satisfied by Z.
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Total The following DL axioms are in X%727x

E,CFE
FCEUEU...UE,

and are satisfied by J. This encoding is derived from the embedding rule ORM2-C1.

By definition of Z for the entity types in DF39,9, it satisfies the following FOL formula:
Exhaustive Subtype({E1,E2,..., En}; E)

((Vm.El(x) 5 E@)AVz.B2(x) S E(x)). .. (Yz.En(z) O E(x))) AVa.E(z) D E1(z)V.. VEn(z))
Exclusive J satisfies the following DL axioms in X%7¢7x

ELCE
E,CFE

E,CFE
E;, C |_| -FE;, fori=1,...,n—1
j=it+1
This encoding is derived from the embedding rule ORM2-D1.
Thus, by definition of Z for the entity types in D554, the following FOL formula is satisfied:

ExclusiveSubtype({E1,E2,..., En}; E):
(‘v’x.El(w) D E(x)A\=E2(z)A. . ./\ﬂEn(x)>/\. . ./\(Va:.En—l(m) D E(x)/\—En(x))/\(VxEn(x) D E(a

3 zero
Hence, 7 is a model of D75,5-

4 EER

Definition 4. Let EER*™ be the fragment of EER that includes the following primitives:

e Fntities

Binary relationships

Component of a relation

Cardinality constraint

Subtype

17



e Subtyping of Relationship
e Mandatory relationship
o FEntities completeness constraints Subsumption

o [Entities disjoint subsumption
We define Di5% as EER*™ conceptual model.

Theorem 3. Let D75 be an EER™™ diagram, ¥ be the corresponding KF' conceptual schema built

using the interoperabilities rules and Y5707y the ACCIN knowledge base constructed as described in

Table 2.
An entity E is consistent in D375 if and only if the corresponding concept encoding of E, is satisfiable
i Y AreTN
Proof. We assume that the signatures of the symbols representing entities, relationships and roles are
disjoint.
In the scope of this proof we will consider the formalisation of EER in [4] as semantics of D} 75%.

(=) Let Z = (AZ%,.7) be an instantiation of D%%%, ie. a model of the corresponding semantics, such

that EZ # @. Then we can build a model 7 = (A7, .7) of ©%72,,, such that E7 # & as follows:

AT = AT UUper{tiere|(el,e2) € R} where R denotes the set of all binary relationships.
E7 = E* for each concept E correponding to entities in D5,
For each binary relationship R, we define RV = {teer,er)|(el,e2) € RT}.

For each ALCZN role modeling the ith-component of the binary relationship R, we define
rg = {(ter,e2),€1)|(e1,€2) € R*}

and
TgQ = {(t(e1,e2), €2)|(el, €2) € RI}

Trivially, EY = E # @. As for the rest of the expressions in $**"°, it must be verified that for all

T that are model of ¥357%, there is a J that is a model of the corresponding ALCZN knowledge

base.

Binary relationships Z satisfies the following condition: For each relationship R = (rg; :
E17T‘E2 . EQ), then

V(€1,€2> € AZ X AI.(€1,62) S RI — e € E1 Ney € EQ

In this case, the KF embedding rule applied is ER-A1.

This rule is encoded in ALCZN as
HT’El.T E R

3y, TC El
HTEQ.T E R
Iy, T C E2

RE ElTElﬂ(SlT’El)HHTEQH(S]_TEQ)
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By definition,
RJ = {t(el,eQ)’(eL 62) € RI}

rg1 = {(t(e1,e2), €1)[(e1,€2) € R*}
TgQ = {(t(e1,e2), €2)|(e1,€2) € R*}

Therefore, J is a model for the first four ALCZN formulas, because they express the domain
and range of roles rg1, rgo.

Finally, the fifth DL formula express that there is just one pair (el,e2) in the R class and
that this pair is in both roles, which is true because of the definition of 7.

Cardinality constraint Z satisfies the following condition: For each relationship R = (rg; :
E17TE2 . EQ), then

CARDg(R,rp1, E1) = (minl, maxl) — Ye; € Ef.minl < |(e1,e) € R*| < maxl
and
CARDR(R, 7, Ey) = (min2, max2) — Ve, € Ef min2 < |(e, e3) € RY| < max2
The KF embedding rule applied is ER-MC1, which generates the following ALCZN formulas
E, T (> minl rg) N (< maxl rg)

Ey T (> min2 rg,) M (< max2 ry,)

By definition,
Tgl = {(t(el,SZ)a e1)|(el,e2) € RI}
rd, = {(te1,e2), €2)|(el,€2) € R%}
Thus the tuples in each role ry, satisfied the same cardinality constraints that R and therefore
J satisifies the ALCZN formulas.
Subtype Let E; and Fs two entities. Z satisfies: Fy 1SA Fs implies EII - E2Z

In this case, the following DL axiom in X727 is

Ey, T E;

This encoding is derived from the KF embedding rule ER-S1. Thus a subsumption between
the entities Ey and Ej is in Di5%. As Z is a model of E; 1SA E, and for all entities, we have
defined E* = EY. Therefore, EY C EY .

Subtyping of Relationship Let R; and R, two binary relationships. Z satisfies R; 1SA Ry
implies RT C RZ
This férmula is encoded in KF metamodel through the KF interaoperability rule ER-SA1.
By definition of the interpretation J for relationship, it satisfies the DL encoding

R C Ry
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Mandatory relationship For each relationship R = (rg; : F1,7gs : Es), then
CARDR(R, TElaEl) = (1,max1) — Vel € Elzl S |(€1,6) S RI| S maxl

This assertion expresses that for every element in the entity £y, it must be the case that is
in relation R. Thus the DL encoding

E1C (>1rg)

expressing that rg; is a role mandatory is satisfied by J.

Entities completeness constraints Subsumption 7 satisfies the following condition: For each
entity E, By, ..., E,, {E,...,E,}cov E implies EFf C E*,1 <i<nand Ef CJ, E}f
The embedding rule ER-C1 is applied and the following DL axioms are in X527

E,CFE
FCEUEU...UE,

These formulas are satisfied by J because EZ = E7 for all entities.

Entities disjoint subsumption 7 satisfies the following condition:
For each entity E, E1, ..., E,, {E1,..., E,}DIsJ E implies EZ C EZ,1 <i <n and

EfNE; =@,k je{l,...,n}k#j

The embedding rule ER-D1 is applied and the following DL axioms are in %727\

E,C []| B, fori=1,...,n-1 (19)
J=i+1
The first n formulas are satisfied by J because EZ = E7 for all entities.
Consider the DL axiom (19). Let e € EY. As EY N EJJ = o,k je{l,....n}k # j,
and ET = EY for all entities, then e ¢ Ef,j € {1,...,n},i # j. Thus e € AJ\EJJ,j €
{1,...,n},i # j. Therefore, e € (|_|;;11 AINEY) M (I AI\EY).
C.ec€ |_| —\E}j

j=it+l

Hence, J is a model for X767,
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(«¢) By the tree-model property we know that if E is satisfiable w.r.t. the ALCZN knowledge base
Yo\ then there exists a tree-like model J = (A7, .7) of %72, such that FY # &. From
such a tree-like model we can build an instantiation Z = (A%, %) of D#5% such that EF* # &, as
follows:

AT = Jgee EY, where € denotes the set of all entities in D75
E* = E7 for all entities F in D55,
For binary relationship R, we define

2
R* = {(e1,e2)3t € R7. \(t,e;) € r{;}

=1

For every role

Since J is a tree-like model, it is guaranteed that there is only one object ¢ in an objectified
relation RY representing a given tuple in R. We must check that Z is indeed an instantiation of
D#ro, with BT # &.

Binary relationships 7 satisfies this ALCZN axioms
dr E1l E R

drg,. TC E1
g ER
drg, C E2

RE ElT’E1|_|(§1TE1)|_|E|7‘E2|_|(§17‘E2)

that have been obtained by applying the KF embedding rule ER-A1.

By definition,
2

R* ={(el,e2)[3t € RV. \(t. ;) € 1}

i=1
ri = {(t,e1)lt € R7}
ris = {(t,e2)|t € R}
Therefore Z satisfies the condition: For each relationship R = (rg; : E1,rgs : Es), then

V(€1,€2> € AZ X AI.(€1,62) S RI — e € E1 Ney € EQ

since for every tuple (el, e2) the ALCZN axioms above ensure the domain and range of R.

Cardinality constraint The following ALCZN axioms
E,C (> minl rg) N(< mazl rg)

Ey T (> min2 rg,) M (< max2 ry,)

are satisfied by 7.
Thus each e € E17 there exists t1,...,t,, minl <m < mazl, such that (¢;,e) € Tgl.
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By definition, of R we can ensure that the following condition:
For each relationship R = (rg; : By, rgo @ Es), then

CARDg(R,rg1, E1) = (minl,mazl) — Ve, € EX.minl < |(e1,e) € RY| < maxl
and

CARDR(R, 7, Ey) = (min2, max2) — Ve, € Ef.min2 < |(e, e2) € RY| < max2

is satisfied by Z.
Subtype In this case, the following DL axiom is in %77,

E, T E;

E7 and Es two entities and it is satified by J. This encoding is derived from the KF embedding
rule ER-S1. Thus a subsumption between the entities Fy and E) is in Di5%. As J is a
model of EY C By and for all entities, we have defined EZ = EY. Therefore, the condition:
E, 15A E, implies EZ C EZ is satisfied by .

Subtyping of Relationship Let R; and Ry two relationships. J satisfies the DL encoding
Ry E Ry

This formula is obtained from the KF embedding rule ER-SA1.
By definition of the interpretation Z for relationship, it satisfies Ry 1SA Ry implies R C RZ.

Mandatory relationship The DL encoding
E1C (> 1rg)

expressing that rg; is a role mandatory, is satisfied by J. Thus for every element in the
entity [, it must be the case that is in relation R.

Thus the condition, for each relationship R = (ry : Fy, 7y : Es), then
CARDRg(R, 71, E1) = (1,mazxl) — Ve, € EL.1 < |(ey,e) € RY| < maxl

is satisfied by Z.

Entities completeness constraints Subsumption The following DL axioms in X727,

E,CFE
FCEUEU..UE,
are satisfied by J. The embedding rule that has been applied is ER-C1.
Since ET = EY for all entities, then the following conditions:
For each entity E,Ey,..., E,, {F1,...,E,}cov E implies EZ C EFZ,1 < i < n and E* C

Ui, BF
is satisfied by Z.
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Entities disjoint subsumption J is a model of the following DL axioms in %7z

ELCFE
E;CFE

E,CE

E;, C |_| -F;, fori=1,...,n—1
j=i+1
They were obtained appling the embedding rule ER-D1 from the following condition:
For each entity E, Ey, ..., Ey, {Ey, ..., E,}D1s) E implies Ef € E*,1 <i<nand EfNE] =
o k,je{l,....,nhk#]
The first n conditions are satisfied by Z because FZ = EY for all entities.
Consider the last condition. Let suppose that e € EF N E¥,i # k. If i < k then

n
E.C [] -E
j=i+1

E;C—-E,_MN...MN=E,N...M=E, (20)

As e € Ef then e € EY and e ¢ =EY and therefore e ¢ []
DL axiom refdisj-ER-vuelta.

Similarly, is the case when ¢ > k considering

i1 —|E3-7 . This contradicts the

Thus e ¢ EF N EF, Vi, k€ {1,...,n},i # k.
L EINEI =2, Vijke{l,...,n},i #k.

] zero
Hence, 7 is a model for D} 7%.
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