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TeMP: A Temporal Monodic Prover?
Ullrich Hustadt1, Boris Konev1??, Alexandre Riazanov2, and Andrei Voronkov2

1 Department of Computer Science, University of Liverpool, UKfU.Hustadt, B.Konevg@csc.liv.ac.uk
2 Department of Computer Science, University of Manchester,UKfriazanov, voronkovg@cs.man.ac.uk

Abstract. We presentTeMP—the first experimental system for testing validity
of monodictemporal logic formulae. The prover implementsfine-grained tempo-
ral resolution. The core operations required by the procedure are performed by
an efficient resolution-based prover for classical first-order logic.

1 Monodic First-Order Temporal Logic

First-Order Temporal Logic,FOTL, is an extension of classical first-order logic by tem-
poral operators for a discrete linear model of time (isomorphic toN, that is, the most
commonly used model of time). Formulae of this logic are interpreted over structures
that associate with each elementn of N, representing a moment in time, a first-order
structure(Dn; In) with its own non-empty domainDn. In this paper we make theex-
panding domain assumption, that is,Dn � Dm if n < m. The set of valid formulae of
this logic is not recursively enumerable. However, the set of valid monodicformulae is
known to be finitely axiomatisable [13].

A formula φ in aFOTL languagewithout equality and function symbols(constants
are allowed) is calledmonodicif any subformulae ofφ of the form gψ, ψ, �ψ,
ψ1Uψ2 or ψ1Wψ2 contains at most one free variable. For example, the formulae8x 9yP(x;y) and8x P(x;c) are monodic, while8x;y(P(x;y)) P(x;y)) is not
monodic.

The monodic fragment has a wide range of novel applications,for example in
spatio-temporal logics [14, 5] and temporal description logics [1].

In this abstract we describeTeMP, the first automatic theorem prover for the monodic
fragment ofFOTL.

2 Monodic fine-grained temporal resolution

Our temporal prover is based onfine-grained temporal resolution[9] which we briefly
describe in this section. Every monodic temporal formula can be translated in a satis-
fiability equivalence preserving way into a clausal form. The calculus operates on four
kinds of temporal clauses, calledinitial , universal, step, andeventualityclauses. Essen-
tially, initial clauses hold only in the initial moment in time, all other kinds of clause
hold in every moment in time. Initial and universal are ordinary first-order clauses, con-
taining no temporal operators.Stepclauses in the clausal form of monodic temporal? Work supported by EPSRC grant GR/L87491.?? On leave from Steklov Institute of Mathematics at St.Petersburg



formulae are of the formp ) gq, where p and q are propositions, or of the form
P(x)) gQ(x), whereP andQ are unary predicate symbols andx a variable. During
a derivation more generalstepclauses can be derived, which are of the formC) gD,
whereC is aconjunctionof propositions, atoms of the formP(x) and ground formulae
of the formP(c), whereP is a unary predicate symbol andc is a constant such that
c occurs in the input formula,D is a disjunctionof arbitrary literals, such thatC and
D have at most one free variable in common. Theeventualityclauses are of the form�L(x), whereL(x) is a literal having at most one free variable.

Monodic fine-grained temporal resolution consists of theeventuality resolution rule:8x(A1(x)) g(B1(x))) : : : 8x(An(x)) g(Bn(x))) �L(x)8x
Vn

i=1:Ai(x) (�Ures) ;
whereU is the current set of all universal clauses,8x(Ai(x) ) gBi(x)) are com-
plex combinations of step clauses, calledfull merged step clauses[9], such that for
all i 2 f1; : : : ;ng, theloopside conditions8x(U^Bi(x)):L(x)) and8x(U^Bi(x))Wn

j=1(A j(x))) are both valid; and the following five rules offine-grained step resolution

1. First-order resolution between two universal clauses and factoring on a universal
clause.The result is a universal clause.

2. First-order resolution between an initial and a universal clause, between two initial
clauses, and factoring on an initial clause. The result is again an initial clause.

3. Fine-grained (restricted) step resolution.

C1 ) g(D1_L) C2 ) g(D2_:M)(C1^C2)σ ) g(D1_D2)σ C1 ) g(D1_L) D2_:M

C1σ) g(D1_D2)σ
4. (Step) factoring.

C1 ) g(D1_L_M)
C1σ) g(D1_L)σ (C1^L^M)) gD1(C1^L)σ ) gD1σ

5. Clause conversion.
A step clause of the formC) gfalse is rewritten into theuniversal clause:C.

In rules 1 to 5, we assume that different premises and conclusions of the deduction rules
have no variables in common; variables may be renamed if necessary. In rules 3 and 4,
σ is a most general unifier of the literalsL andM such thatσ does not map variables
from C1 or C2 into a constant or a functional term.

The input formula is unsatisfiable over expanding domains ifand only if fine-
grained temporal resolution derives the empty clause (see [9], Theorem 8).

3 Implementation

The deduction rules of fine-grained step resolution are close enough to classical first-
order resolution to allow us to use first-order resolution provers to provide an imple-
mentation of our calculus.

Let S be a temporal problem in clausal form. For everyk-ary predicate,P, occur-
ring in S, we introduce new(k+ 1)-ary predicateeP. We will also use the constant 0
(representing the initial moment in time), and unary function symbolss (representing
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the successor function on time) andh, which we assume not to occur inS. Let φ be a
first-order formula in the vocabulary ofS. We denote by[φ]T the result of replacing all
occurrences of predicates inφ by their “tilded” counterparts withT as the first argument
(e.g.P(x;y) is replaced witheP(T;x;y)). The termT will either be the constant 0 or the
variablet (intuitively, t represents a moment in time). The variablet is assumed to be
universally quantified.

Now, in order to realise fine-grained step resolution by means of classical first-order
resolution, we define a set of first-order clausesFO(S) as follows.
– For every initial clauseC from S, the clause[C]0 is in FO(S).
– For every universal clauseD from S, the clause[D]t is in FO(S).
– For every step clausep) gq from S, the clause:ep(t)_ eq(t) is in FO(S), and for

every step clauseP(x)) gQ(x), the clause:P(t;x)_Q(s(t);h(x)) is in FO(S).
It is a straightforward routine to check that fine-grained step resolution onS, including
(implicitly) the clause conversion rule, is modelled by classical ordered first-order reso-
lution with selection (see, e.g., [2]) onFO(S) together with an additional requirement:
if a clause contains anext-stateliteral, i.e., a literal whose first argument starts with the
function symbols, this clause can only be resolved on next-state literals. This require-
ment can be enforced by an appropriate literal selection discipline. Note that standard
redundancy deletion mechanisms, such as subsumption and tautology deletion, are also
compatible with fine-grained step resolution (for details see [9]).

As for the eventuality resolution rule, note that finding full merged clauses which
satisfy the side conditions of the eventuality resolution rule is a non-trivial problem [9].
We find such merged clauses by means of a search algorithm presented in [9] which is
again based on step resolution. Hence, the performance of the step resolution inference
engine is critical.

In our implementation, we extended the propositional temporal prover,TRP++ [6],
to deal with monodic formulae. The main procedure of our implementation of this cal-
culus consists of a loop where at each iteration (i) the set oftemporal clauses is satu-
rated under application of the step resolution rules, and (ii) then for every eventuality
clause in the clause set, an attempt is made to find a set of premises for an application
of the eventuality resolution rule. If we find such a set, the set of clauses representing
the conclusion of the application is added to the current setof clauses. The main loop
terminates if the empty clause is derived, indicating that the initial set of clauses is un-
satisfiable, or if no new clauses have been derived during thelast iteration of the main
loop, which in the absence of the empty clause indicates thatthe initial set of clauses is
satisfiable.

The task of saturating clause sets with classical resolution simulating step resolution
is delegated to theVampire kernel [11], which is linked to the whole system as a C++
library. Minor adjustments have been made in the functionality of Vampire to accom-
modate step resolution: a special mode for literal selection has been introduced such
that in a clause containing a next-state literal only next-state literals can be selected. At
the moment, the result of a previous saturation step, augmented with the result of an
eventuality resolution application, is resubmitted to theVampire kernel, although no
inferences are performed between the clauses from the already saturated part. This is
only a temporary solution, and in the futureVampire will support incremental input in
order to reduce communication overhead.
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Fig. 1. Performance of the systems onC1
ran (left) andC2

ran (right)

4 Performance evaluation

It is difficult to evaluate the performance ofTeMP for two reasons. First, there are
no established monodic benchmark sets. Second, there is no other monodic temporal
provers to compare with.

However, we find it worthwhile to compare the performance ofTeMP to that of
TRP++ 2.0 [6] onpropositionaltemporal logic (PLTL) formulae. Both provers perform
essentially the same inference steps on such formulae, since the rules of fine-grained
temporal resolution presented in Section 2 coincide with those of propositional temporal
resolution [3] on propositional temporal logic formulae.

BesidesTeMP andTRP++ 2.0 we have also included two tableau-based procedures
for PLTL implemented in the Logics Workbench 1.1, described respectively in [8] and
[12], andTRP, a prototype implementation of temporal resolution in SICStus Prolog
by the first author.

We have compared the systems on two classes of semi-randomlygeneratedPLTL-
formulae, calledC 1

ran andC 2
ran, introduced in [7], for parametersn = 12, k = 3, and

p = 0:5. The tests were performed on a PC with a 1.3GHz AMD Athlon processor,
512MB main memory, and 1GB virtual memory running Red Hat Linux 7.1. For each
individual satisfiability test of a formula a time-limit of 1000 CPU seconds was used.

The left- and right-hand sides of Figure 1 depict the behaviour of the systems on
C 1

ran and onC 2
ran, respectively. All the graphs contain a vertical line. On the left of the

line most formulae are satisfiable, on the right most formulae are unsatisfiable.
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The upper part of the figure shows the resulting graphs for themedian CPU time
consumption of each of the systems, while the lower part shows the graphs for the
maximal CPU time consumption. In all performance graphs, a point for a system above
the 1000 CPU second mark indicates that the median or maximalCPU time required
by the system exceeded the imposed time limit.

We can see from these graphs thatTeMP is about an order of magnitude slower than
TRP++ 2.0, but still faster than the prototypical systemTRP. This can be explained by
high overheads in communications withVampire. TeMP is also faster than the two
tableau-based procedures onC 1

ran and is only outperformed by the procedure of [12]
on satisfiable formulae inC 2

ran. In our opinion, the results shows the strength ofTeMP,
since it is not specialised for propositional reasoning.

We are aware of newtableau-basedsystems [10] for monodic temporal logic being
under development. When these systems are available, we will be able to perform a
systematic comparison withTeMP. We also intend to look at more realistic formulae
coming from verification problems [4], instead of randomly generated formulae.
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